بررسی تجربی مقاوم سازی اتصالات بتنی با ورق های کامپوزیتی FRP

ﺑﺮای تأمین شکل‌پذیری ﻛﺎﻓﻲ اﻋﻀﺎ و ﻧﻴﺰ اﺗﺼﺎﻻت ﺑﺘﻨﻲ در ﺑﺮاﺑﺮ ﺑﺎرﻫﺎی وارده، ﺿﻮاﺑﻂ ویژه‌ای در آئین‌نامه‌های ﻣﺨﺘﻠﻒ وارد ﮔﺮدﻳﺪه ﻛﻪ رﻋﺎﻳﺖ آن‌ها در ﺳﺎﺧﺖ سازه‌های بتن‌آرمه ﺿﺮوری می‌باشد و اﻳﻦ در ﺣﺎﻟﻲ اﺳﺖ ﻛﻪ ﺑﺴﻴﺎری از ساختمان‌های بتن‌آرمه ﺑﺎ ﺳﻴﺴﺘﻢ ﻗﺎب ﺧﻤﺸﻲ ﻛﻪ در نیم‌قرن ﮔﺬﺷﺘﻪ در ﺳﺮﺗﺎﺳﺮ دﻧﻴﺎ احداث‌شده‌اند، ﺑﻪ دﻟﻴﻞ ﻃﺮاﺣﻲ ﺑﺮ ﻣﺒﻨﺎی آئین‌نامه‌های ﻗﺪﻳﻤﻲ ﻛﻪ ﺿﻮاﺑﻂ لرزه‌ای را ﻣﻨﻈﻮر نکرده‌اند و ﻳﺎ ﺑﻪ دﻟﻴﻞ ﻣﺸﻜﻼت اﺟﺮاﻳﻲ، ﻧﺎﺣﻴﻪ وﻳﮋه ﺧﺎﻣﻮت ﮔﺬاری ﻓﺸﺮده در ﺗﻴﺮ رﻋﺎﻳﺖ ﻧﺸﺪه ﻛﻪ ﻣﻮﺟﺒﺎت ﺷﻜﺴﺖ ﺑﺮﺷﻲ در اﻳﻦ ﻧﺎﺣﻴﻪ ﺣﺴﺎس از ﺗﻴﺮ را ﻓﺮاﻫﻢ می‌آورد و ﻫﻤﭽﻨﻴﻦ ﺑﻪ دﻟﻴﻞ ﻛﻤﺒﻮد آرﻣﺎﺗﻮرﻫﺎی ﻋﺮﺿﻲ در اﻳﻦ ﻧﺎﺣﻴﻪ، ﻣﺤﺼﻮر ﺷﻮﻧﺪﮔﻲ ﺑﺘﻦ ﻓﺸﺎری به‌خوبی انجام‌نشده ﻛﻪ درنتیجه شکل‌پذیری ﺗﻴﺮ و اﺗﺼﺎل ﻛﺎﻫﺶ می‌یابد. از ﻃﺮﻓﻲ دﻳﮕﺮ اﺗﺼﺎﻻت ﺗﻴﺮ- ﺳﺘﻮن ﺑﺘﻨﻲ ﻧﻴﺰ در سازه‌های ﺑﺎ ﺳﻴﺴﺘﻢ ﻗﺎب ﺧﻤﺸﻲ، در ﻧﺎﺣﻴﻪ ﭼﺸﻤﻪ اﺗﺼﺎل و در ﺳﺘﻮن در زلزله‌های اﺧﻴﺮ ﺑﻴﺸﺘﺮﻳﻦ ﺧﺮاﺑﻲ و ﺧﺴﺎرت را داشته‌اند ﻛﻪ اﻳﻦ ﺧﺴﺎرات ﻧﺎﺷﻲ از ﺿﻌﻒ اﺟﺮای اﺗﺼﺎﻻت ﺑﺘﻨﻲ ﺑﻪ دﻟﻴﻞ ﻋﺪم ﺧﺎﻣﻮت ﮔﺬاری و ﻳﺎ ﻧﺎﻛﺎﻓﻲ ﺑﻮدن ﺧﺎﻣﻮت ﻫﺎی ﭼﺸﻤﻪ اﺗﺼﺎل ﺑﻮده و درنتیجه ﻣﻮﺟﺐ اﻳﺠﺎد ﻣﻔﺼﻞ ﭘﻼﺳﺘﻴﻚ و ﺿﻌﻒ ﺑﺮﺷﻲ در اﺗﺼﺎل می‌شود. ﻟﺬا مقاوم‌سازی ساختمان‌ها ﺑﺮای ﺟﻠﻮﮔﻴﺮی از آسیب‌های اﺣﺘﻤﺎﻟﻲ ﻫﻨﮕﺎم زﻟﺰﻟﻪ اﻣﺮی ﺿﺮوری ﺑﻪ ﻧﻈﺮ می‌رسد. از ﻃﺮف دﻳﮕﺮ ﭘﺲ از وﻗﻮع زﻟﺰﻟﻪ ﺑﺴﻴﺎری از ساختمان‌های ﺑﺘﻨﻲ ﻛﻪ ﺿﻮاﺑﻂ آرماتور گذاری ﻋﺮﺿﻲ را رﻋﺎﻳﺖ نکرده‌اند دﭼﺎر آسیب‌های سازه‌ای ﺷﺪه و در اﻛﺜﺮ ﻣﻮارد ﺳﻄﺢ ﻛﻢ اﻳﻦ آسیب‌ها به‌گونه‌ای اﺳﺖ ﻛﻪ ﺟﺎﻳﮕﺰﻳﻨﻲ ﺳﺎﺧﺘﻤﺎن ﻣﻮﺟﻮد ﺑﺎ ﻳﻚ ﺳﺎﺧﺘﻤﺎن ﻧﻮﺳﺎز، اﻣﺮی اﻗﺘﺼﺎدی ﻧﻴﺴﺖ و می‌توان ﺑﺎ ﻳﻜﻲ از ﺗﻜﻨﻴﻚ ﻫﺎی ﺗﺮﻣﻴﻢ ﺑﺎ هزینه‌های به‌مراتب ﻛﻤﺘﺮ، ﺳﺎزه ﺳﺎﺧﺘﻤﺎن را دوﺑﺎره ﺟﻬﺖ ﺗﺤﻤﻞ ﺑﺎرﻫﺎی لرزه‌ای آﻣﺎده ﺳﺎﺧﺖ.

ﺗﻘﻮﻳﺖ و ﺗﺮﻣﻴﻢ اﺗﺼﺎﻻت ﺑﺘﻨﻲ ﻋﻤﻠﻴﺎت پیچیده‌ای می‌باشد ﻛﻪ ﺑﻪ روش‌های ﻣﺨﺘﻠﻔﻲ ﺻﻮرت می‌پذیرد. از اﻳﻦ ﻣﻴﺎن می‌توان ﺑﻪ روش‌هایی ﻣﺎﻧﻨﺪ اﻓﺰاﻳﺶ ﺳﻄﺢ ﻣﻘﻄﻊ اﺗﺼﺎل ﺑﺎ بتن‌ریزی ﻣﺠﺪد، ﻣﺤﺼﻮر ﻛﺮدن ﻧﺎﺣﻴﻪ اﺗﺼﺎل ﺑﺎ ورق‌های ﻓﻮﻻدی و ﻏﻴﺮه ﻧﺎم ﺑﺮد. ﻃﻲ دو دﻫﻪ اﺧﻴﺮ ﺑﺮای رﻓﻊ ﻣﺸﻜﻼت و سختی‌های روش‌های ﭘﻴﺸﻴﻦ و به‌ویژه ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﻣﻼﺣﻈﺎت ﻣﻌﻤﺎری، ﻣﺤﻘﻘﺎن ﺑﻴﺸﺘﺮ ﺑﺮ روی ﺗﻘﻮﻳﺖ اﺗﺼﺎل ﺑﺎ اﺳﺘﻔﺎده از ورق‌های FRP ﺑﻪ دﻟﻴﻞ ﺧﺼﻮﺻﻴﺎت منحصربه‌فرد آن من‌جمله ﻣﻘﺎوﻣﺖ ﺑﺎﻻ،ﺳﺒﻜﻲ، ﻣﻘﺎوﻣﺖ ﺷﻴﻤﻴﺎﻳﻲ و ﺳﻬﻮﻟﺖ اﺟﺮا متمرکزشده‌اند اﻃﻼﻋﺎت زﻳﺎدی ﻛﻪ از ﺗﺤﻘﻴﻘﺎت آزﻣﺎﻳﺸﮕﺎﻫﻲ انجام‌شده ﺑﺮ روی اﺗﺼﺎﻻت تیرستون ﺑﺘﻨﻲ به‌دست‌آمده، نشان‌دهنده وﻗﻮع ﺷﻜﺴﺖ ﺑﺮﺷﻲ در اﺗﺼﺎل ﺗﺤﺖ ﺑﺎرﻫﺎی لرزه‌ای می‌باشد ﻛﻪ اﻟﮕﻮﻫﺎی مقاوم‌سازی ﺑﺴﻴﺎری ﺟﻬﺖ ﺟﻠﻮﮔﻴﺮی از اﻳﻦ ﭘﺪﻳﺪه اراﺋﻪ ﺷﺪه اﻧﺪ.

ﭼﻨﺪﻳﻦ ﻣﻄﺎﻟﻌﻪ در ﺳﺎل ﻫﺎی اﺧﻴﺮ در ﺑﺮرﺳﻲ اﻣﻜﺎن اﺳﺘﻔﺎده از ﻣﻮاد ﻛﺎﻣﭙﻮزﻳﺘﻲ و اﻟﻴﺎف ﭘﻠﻴﻤﺮی ﺳﻴﻤﺎﻧﻲ ﺑﺎ ﻋﻤﻠﻜﺮد ﺑﺎﻻ (HPFRCC) ﺑﻌﻨﻮان ﻳﻚ ﻣﺎده ﺗﻮاﻧﻤﻨﺪ ﻛﻨﻨﺪه، ﻧﺘﺎﻳﺠﻲ را ﺑﻴﺎن داشته‌اند از دﻳﺮ ﺑﺎز سازه‌های ﺑﺘﻨﻲ ﺗﻮﺳﻂ ﺗﺰرﻳﻖ ﺗﺤﺖ ﻓﺸﺎر اﭘﻮﻛﺴﻲ ﺗﻌﻤﻴﺮ ﺷﺪه اﻧﺪ ﻛﻪ ﻳﻚ روش ﻧﺴﺒﺘﺎ ﺟﺪﻳﺪ از اﻳﻦ ﻧﻮع ﺗﻌﻤﻴﺮ، اﺷﺒﺎع ﻛﺮدن ﺑﺎ ﻣﻜﺶ اﺳﺖ در دﻫﻪ 1980 و اواﻳﻞ دﻫﻪ 1990، ژاﻛﺖ ﻫﺎی ﻓﻮﻻدی ﺟﻬﺖ ﺗﻘﻮﻳﺖ اﺗﺼﺎﻻت ﺑﻪ ﻛﺎر ﮔﺮﻓﺘﻪ ﻣﻲ ﺷﺪﻧﺪ. در اواﺧﺮ دﻫﻪ 1990 و در ﺳﺎل ﻫﺎی اﺧﻴﺮ،از ﻛﺎﻣﭙﻮزﻳﺖ ﻫﺎی FRP ﺑﺮای ﺗﻘﻮﻳﺖ اﺗﺼﺎﻻت اﺳﺘﻔﺎده ﮔﺮدﻳﺪه اﺳﺖ از ﺳﺎل 1998 ﺗﺤﻘﻴﻘﺎت ﭘﻴﺮاﻣﻮن ﺗﻘﻮﻳﺖ اﺗﺼﺎﻻت ﺗﻴﺮ- ﺳﺘﻮن ﺑﺘﻦ ﻣﺴﻠﺢ، ﺑﻪ ﻛﺎرﺑﺮد ﻛﺎﻣﭙﻮزﻳﺖ ﻫﺎی ﭘﻠﻴﻤﺮی ﻣﺴﻠﺢ ﺑﻪ اﻟﻴﺎف در ﻗﺎﻟﺐ ﺻﻔﺤﻪ ﻫﺎی ﺷﻜﻞ ﭘﺬﻳﺮ ﭼﺴﺒﻴﺪه ﺑﺎ اﭘﻮﻛﺴﻲ،ﻧﻮارﻫﺎی ﺳﺎﺧﺘﻪ ﺷﺪه در ﺷﻜﻞ ﻫﺎی ﻣﺨﺘﻠﻒ ﻳﺎ ﻛﺎﺷﺘﻦ ﻣﻴﻠﮕﺮدﻫﺎی ﻧﺰدﻳﻚ ﺑﻪ ﺳﻄﺢ ﻣﻌﻄﻮف ﺷﺪه اﺳﺖ.ﺗﺤﻘﻴﻘﺎت ﻣﺒﺴﻮﻃﻲ ﺑﺮ روی ﺗﻘﻮﻳﺖ اﺗﺼﺎﻻت ﺑﺎ ﻛﺎﻣﭙﻮزﻳﺖ ﻫﺎ انجام‌شده ﻛﻪ در آن‌ها شکل‌پذیری و ﻣﻘﺎﻣﺖ ﺧﻤﺸﻲ اﺗﺼﺎﻻت ﺗﻘﻮﻳﺖ ﺷﺪه ﺑﺎ ورق‌های FRP ﺑﺮرﺳﻲ ﮔﺮدﻳﺪه اﺳﺖ ﻫﻤﭽﻨﻴﻦ ﺗﺤﻘﻴﻘﺎﺗﻲ ﻧﻴﺰ در زﻣﻴﻨﻪ ﺑﺮرﺳﻲ ﻣﻘﺎوﻣﺖ ﺑﺮﺷﻲ اﺗﺼﺎل در اﺗﺼﺎﻻت ﺗﻘﻮﻳﺖ ﺷﺪه ﺑﺎ ورق‌های FRP انجام‌شده اﺳﺖ اﺳﺘﻔﺎده از ﻣﻴﻠﮕﺮدﻫﺎی CFRP ﺑﺮای ﺑﻬﺴﺎزی اﺗﺼﺎﻻت ﺑﺘﻨﻲ ﻧﻴﺰ از ﺷﻴﻮه ﻫﺎی ﺟﺪﻳﺪ در اﻣﺮ مقاوم‌سازی اﺗﺼﺎﻻت می‌باشد.

ﺑﻨﺎﺑﺮاﻳﻦ در اﻳﻦ ﻣﻄﺎﻟﻌﻪ ﻳﻚ روش مقاوم‌سازی ﭘﻴﺸﻨﻬﺎدی ﺑﺎ ورق‌های FRP ﺑﺮای ﺗﻘﻮﻳﺖ اﻳﻦ ﻧﻮع اﺗﺼﺎﻻت ﺿﻌﻴﻒ اراﺋﻪ می‌شود ﺗﺎ ﻣﻴﺰان ﺗﺎﺛﻴﺮ اﻳﻦ روش مقاوم‌سازی ﺑﺮ ﻛﺎﻫﺶ آسیب‌های ﻧﺎﺣﻴﻪ ﭼﺸﻤﻪ اﺗﺼﺎل و ﻧﻮاﺣﻲ ﺑﺤﺮاﻧﻲ ﺗﻴﺮ و ﺳﺘﻮن ﺑﺮرﺳﻲ ﺷﺪه و ﻣﺤﻞ ﺗﺸﻜﻴﻞ ﻣﻔﺼﻞ ﭘﻼﺳﺘﻴﻚ و ﻗﺎﺑﻠﻴﺖ ﺟﺎﺑﺠﺎﻳﻲ آن از ﻧﺎﺣﻴﻪ ﭼﺸﻤﻪ اﺗﺼﺎل و ﺑﺮِ ﺗﻴﺮ در ﻧﻤﻮﻧﻪ ﻣﺮﺟﻊ ﺿﻌﻴﻒ، ﺑﻪ ﻓﺎﺻﻠﻪ ای دورﺗﺮ در ﻧﻤﻮﻧﻪ مقاوم‌سازی ﺷﺪه ﺑﺮرﺳﻲ می‌شود. ﺿﻤﻨﺎ وﺿﻌﻴﺖ ﺷﻜﺴﺖ ﺑﺮﺷﻲ در ﻧﺎﺣﻴﻪ ﺑﺤﺮاﻧﻲ ﺗﻴﺮ و ﻣﻴﺰان شکل‌پذیری ﻧﺎﺣﻴﻪ اﺗﺼﺎل، در ﻧﻤﻮﻧﻪ ﻣﺮﺟﻊ ﺿﻌﻴﻒ و ﻧﻤﻮﻧﻪ ﺗﻘﻮﻳﺖ ﺷﺪه ﺑﺮرﺳﻲ و ﻣﻘﺎﻳﺴﻪ می‌شود.

مقاوم سازی اتصالات بتنی با استفاده از الیاف FRP

دﺳﺘﻮر ﻛﺎر آزﻣﺎﻳﺸﮕﺎﻫﻲ

دو اﺗﺼﺎل ﺗﻴﺮ- ﺳﺘﻮن ﺧﺎرﺟﻲ بتن‌آرمه ﻃﺮاﺣﻲ، ﺳﺎﺧﺘﻪ و ﺳﭙﺲ ﺗﺤﺖ ﺑﺎر ﺟﺎﻧﺒﻲ ﭼﺮﺧﻪ ای ﺗﺎ ﻇﺮﻓﻴﺖ ﺑﺎرﺑﺮی ﻧﻬﺎﻳﻲ ﻣﻮرد آزﻣﺎﻳﺶ ﻗﺮار ﮔﺮﻓﺘﻨﺪ. ﻧﻤﻮﻧﻪ اول ﺑﻪ ﻋﻨﻮان ﻧﻤﻮﻧﻪ ﻣﺮﺟﻊ و ﻧﻤﻮﻧﻪ دﻳﮕﺮ ﻧﻴﺰ ﺑﻪ ﻋﻨﻮان ﻧﻤﻮﻧﻪ ﺗﻘﻮﻳﺖ ﺷﺪه ﺑﺎ ورق‌های FRP درﻧﻈﺮ ﮔﺮﻓﺘﻪ ﺷﺪﻧﺪ. ﺳﭙﺲ رﻓﺘﺎر ﻛﻠﻲ و ﻣﻮﺿﻌﻲ اﻳﻦ دو اﺗﺼﺎل ﻣﺸﺎﻫﺪه ﺷﺪ و ﭘﺎراﻣﺘﺮﻫﺎی ﻣﻬﻤﻲ ﻫﻤﭽﻮن ﻇﺮﻓﻴﺖ ﺑﺎرﺑﺮی و شکل‌پذیری آﻧﻬﺎ ﻣﻮرد ارزﻳﺎﺑﻲ ﻗﺮار ﮔﺮﻓﺖ.

 

 

ﺟﺰﺋﻴﺎت اﺗﺼﺎﻻت

دردو اﺗﺼﺎل ﺳﺎﺧﺘﻪ ﺷﺪه در اﻳﻦ ﻛﺎر آزﻣﺎﻳﺸﮕﺎﻫﻲ ﺿﻮاﺑﻂ شکل‌پذیری ﻣﺘﻮﺳﻂ در ﻣﻮرد ﺧﺎﻣﻮت ﮔﺬاری ﻓﺸﺮده در ﻧﺎﺣﻴﻪ ﺑﺤﺮاﻧﻲ ﺗﻴﺮ و ﭼﺸﻤﻪ اﺗﺼﺎل رﻋﺎﻳﺖ ﻧﺸﺪه اﺳﺖ. ﻧﻤﻮﻧﻪ اول ﺑﻪ ﻋﻨﻮان ﻣﺮﺟﻊ ﺿﻌﻴﻒ (WR) اﻧﺘﺨﺎب ﺷﺪ و ﻧﻤﻮﻧﻪ دﻳﮕﺮ (RW1) ﻧﻴﺰ ﺑﺎ اﻟﮕﻮی مقاوم‌سازی ﻣﻨﺎﺳﺐ ﺗﻮﺳﻂ ورق‌های FRP، مقاوم‌سازی ﺷﺪ. اﺗﺼﺎﻻت ﻣﻮرد ﻧﻈﺮ ﻛﻪ ﻳﻚ اﺗﺼﺎل ﺧﺎرﺟﻲ را در ﻃﺒﻘﺎت ﻣﻴﺎﻧﻲ ﻳﻚ ﻗﺎب دوﺑﻌﺪی ﺷﺒﻴﻪ ﺳﺎزی ﻣﻲ ﻛﻨﻨﺪ، ﺑﺎ ﻣﻘﻴﺎس 1:2 ﺳﺎﺧﺘﻪ ﺷﺪه و اﺑﻌﺎد ﻛﻠﻴﻪ ﻧﻤﻮﻧﻪ ﻫﺎ ﻳﻜﺴﺎن می‌باشد ﻛﻪ در آن‌ها ﺳﺘﻮن اﺗﺼﺎل ﺑﻪ ﻃﻮل 1900 ﻣﻴﻠﻴﻤﺘﺮ دارای ﻣﻘﻄﻊ ﻣﺮﺑﻌﻲ ﺑﻪ ﻋﺮض 250 ﻣﻴﻠﻴﻤﺘﺮ ﺑﻮده و ﺗﻴﺮ اﺗﺼﺎل ﻧﻴﺰ ﺑﻪ ﻃﻮل 1400 ﻣﻴﻠﻴﻤﺘﺮ دارای ﻣﻘﻄﻌﻲ ﺑﺎ ارﺗﻔﺎع و ﻋﺮض 200 و 250 ﻣﻴﻠﻴﻤﺘﺮ می‌باشد. اﺑﻌﺎد ﻣﻘﻄﻊ و آراﻳﺶ ﻣﻴﻠﮕﺮدﻫﺎی ﻧﻤﻮﻧﻪ ﻫﺎ در ﺷﻜﻞ 1 ﻧﺸﺎن داده ﺷﺪه ﻛﻪ ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ آن از 8 ﻋﺪد آرﻣﺎﺗﻮر ﺑﺎ ﻗﻄﺮ 14 ﻣﻴﻠﻴﻤﺘﺮ ﺑﻪ ﻋﻨﻮان آرﻣﺎﺗﻮر ﻃﻮﻟﻲ در ﺳﺘﻮن اﺳﺘﻔﺎده ﺷﺪه و از 6 ﻋﺪد آرﻣﺎﺗﻮر ﺑﺎ ﻗﻄﺮ 12 ﻣﻴﻠﻴﻤﺘﺮ ﺑﻪ ﻋﻨﻮان آرﻣﺎﺗﻮر ﻛﺸﺸﻲ ﻫﻢ در ﺑﺎﻻ و ﻫﻢ در ﭘﺎﻳﻴﻦ ﺗﻴﺮ اﺳﺘﻔﺎده ﮔﺮدﻳﺪ. ﻫﻤﭽﻨﻴﻦ ﻓﺎﺻﻠﻪ ﻛﻠﻴﻪ ﺧﺎﻣﻮت ﻫﺎی ﺗﻴﺮ در ﻫﺮ دو ﻧﻤﻮﻧﻪ در ﻧﺎﺣﻴﻪ ﺑﺤﺮاﻧﻲ و در ﺧﺎرج از آن 100 ﻣﻴﻠﻴﻤﺘﺮ می‌باشد ﻛﻪ درنتیجه ﺿﺎﺑﻄﻪ ﺧﺎﻣﻮت ﮔﺬاری ﻓﺸﺮده در ﻧﺎﺣﻴﻪ ﺑﺤﺮاﻧﻲ ﺗﻴﺮ رﻋﺎﻳﺖ ﻧﺸﺪه اﺳﺖ. در ﺳﺘﻮن ﺗﻤﺎﻣﻲ ﻧﻤﻮﻧﻪ ﻫﺎ در ﻧﺎﺣﻴﻪ ﺑﺤﺮاﻧﻲ ﻓﺎﺻﻠﻪ ﺧﺎﻣﻮت ﻫﺎ 50 ﻣﻴﻠﻴﻤﺘﺮ و در ﻧﻮاﺣﻲ دﻳﮕﺮ ﻓﺎﺻﻠﻪ ﺧﺎﻣﻮت ﻫﺎ 150 ﻣﻴﻠﻴﻤﺘﺮ می‌باشد در ﺣﺎﻟﻲ ﻛﻪ ﺿﺎﺑﻄﻪ ﺧﺎﻣﻮت ﮔﺬاری ﻓﺸﺮده ﻧﺎﺣﻴﻪ ﺑﺤﺮاﻧﻲ ﺳﺘﻮن در ﻣﻮرد ﭼﺸﻤﻪ اﺗﺼﺎل رﻋﺎﻳﺖ ﻧﺸﺪه و ﭼﺸﻤﻪ اﺗﺼﺎل ﻓﺎﻗﺪ ﻫﺮ ﮔﻮﻧﻪ ﺧﺎﻣﻮت می‌باشد.

مقاوم‌سازی ﻧﻤﻮﻧﻪ ﺿﻌﻴﻒ ﺑﺎ ورق‌های ﺗﻘﻮﻳﺘﻲFRP

در ﻧﻤﻮﻧﻪ ﺿﻌﻴﻒ ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﺣﺬف ﺧﺎﻣﻮت ﻫﺎی ﻧﺎﺣﻴﻪ ﭼﺸﻤﻪ اﺗﺼﺎل و ﺑﺮرﺳﻲ ﻛﺎرﻫﺎی ﺗﺤﻘﻴﻘﺎﺗﻲ ﭘﻴﺸﻴﻦ اﻧﺘﻈﺎر ﻣﻲ رود ﺑﺎ ﺷﺮوع ﺑﺎرﮔﺬاری، ﺗﺮک ﻫﺎی ﻗﻄﺮی در ﻧﺎﺣﻴﻪ ﭼﺸﻤﻪ اﺗﺼﺎل ﺑﻮﺟﻮد آﻣﺪه و ﺑﺎ اداﻣﻪ ﺑﺎرﮔﺬاری ، ﭼﺸﻤﻪ اﺗﺼﺎل ﻛﺎراﻳﻲ ﺧﻮد را از دﺳﺖ داده و ﺳﺎزه ﻧﺎﭘﺎﻳﺪار و ﻣﻨﻬﺪم ﺷﻮد. ﺑﻨﺎﺑﺮاﻳﻦ ﻧﻤﻮﻧﻪ ﺿﻌﻴﻒ RW1، ﻗﺒﻞ از ﺑﺎرﮔﺬاری ﻃﺒﻖ ﺿﻮاﺑﻂ آﻳﻴﻦ ﻧﺎﻣﻪ ACI‐440 و ﺗﻮﺳﻂ ورق‌های FRP مقاوم‌سازی می‌شود. ﻃﺮح ﺗﻘﻮﻳﺖ در اﻳﻦ ﻧﻮاﺣﻲ به‌گونه‌ای اﻧﺘﺨﺎب ﻣﻲ ﮔﺮدد ﻛﻪ از اﻳﺠﺎد و ﮔﺴﺘﺮش ﺗﺮک ﻫﺎی ﺑﺮﺷﻲ 45 درﺟﻪ و ﺗﻮﺳﻌﻪ ﺧﺮاﺑﻲ در اﻳﻦ ﻧﻮاﺣﻲ ﻣﻬﻢ ﺟﻠﻮﮔﻴﺮی ﺷﺪه و اﻣﻜﺎن ﺑﺎرﺑﺮی درﺗﻐﻴﻴﺮ ﻣﻜﺎن ﻫﺎی ﺑﺎﻻﺗﺮ ﻓﺮاﻫﻢ ﺷﻮد ﻛﻪ اﻳﻦ ﻣﻮﺟﺒﺎت اﻓﺰاﻳﺶ شکل‌پذیری در اﺗﺼﺎل را ﻓﺮاﻫﻢ می‌آورد. در ﺷﻜﻞ 2 اﻟﮕﻮی ﺗﻘﻮﻳﺖ ﺗﻴﺮ و ﭼﺸﻤﻪ اﺗﺼﺎل در ﻧﻤﻮﻧﻪ RW1 ﻫﻤﺮاه ﺑﺎ اﺑﻌﺎد ﻣﺮﺑﻮﻃﻪ ﻧﺸﺎن داده ﺷﺪه اﺳﺖ. از ﻳﻚ ورق U ﺷﻜﻞ ﺑﺮ روی ﭼﺸﻤﻪ اﺗﺼﺎل ﻛﻪ ﺟﻬﺖ اﻟﻴﺎف آن ﻣﻮازی ﻃﻮل ﺗﻴﺮ ﺑﻮده، اﺳﺘﻔﺎده می‌شود ﻛﻪ ﻋﺮض آن 20 ﺳﺎﻧﺘﻴﻤﺘﺮ ( ﺑﺮاﺑﺮ ارﺗﻔﺎع ﺗﻴﺮ)و ﻃﻮل آن ﻧﻴﺰ 75 ﺳﺎﻧﺘﻴﻤﺘﺮ ( ﺳﻪ ﺑﺮاﺑﺮ ﺑﻌﺪ ﺳﺘﻮن) می‌باشد اﻟﻒ). ﻫﻤﭽﻨﻴﻦ در ﻃﺮح ﺗﻘﻮﻳﺖ ﺗﻴﺮ از ﻳﻚ ورق U ﺷﻜﻞ در زﻳﺮ ﺗﻴﺮ ﻛﻪ دو وﺟﻪ ﻛﻨﺎری ﻳﺎ ﺟﺎن ﺗﻴﺮ و ﺳﻄﺢ زﻳﺮﻳﻦ ﺗﻴﺮ را ﭘﻮﺷﺎﻧﺪه، اﺳﺘﻔﺎده می‌شود ﻛﻪ ﺟﻬﺖ اﻟﻴﺎف آن در راﺳﺘﺎی ﻋﻤﻮدی می‌باشد. اﻳﻦ ورق ﻋﻼوه ﺑﺮ اﻓﺰاﻳﺶ ﻇﺮﻓﻴﺖ ﺑﺮﺷﻲ ﺗﻴﺮ،وﻳﮋﮔﻲ ﻣﺤﺼﻮر ﻛﻨﻨﺪﮔﻲ ﻧﺎﺣﻴﻪ ﺑﺘﻦ ﻓﺸﺎری ﻗﺴﻤﺖ زﻳﺮﻳﻦ ﺗﻴﺮ را ﻧﻴﺰ دارد. ﻫﻤﭽﻨﻴﻦ ﺻﻔﺤﺎت U ﺷﻜﻞ ﻃﻮری در ﺑﺎﻻ و ﭘﺎﻳﻴﻦ ﺗﻴﺮ ﻧﺼﺐ ﻣﻲ ﺷﻮﻧﺪ ﻛﻪ ﻫﻴﭻ ﮔﻮﻧﻪ ﻫﻤﭙﻮﺷﺎﻧﻲ ﺑﺮ روی ﻳﻜﺪﻳﮕﺮ ﻧﺪاﺷﺘﻪ و ﺑﻪ ﻋﺒﺎرت دﻳﮕﺮ از اﻳﺠﺎد دورﭘﻴﭻ در ﺗﻴﺮ ﺟﻠﻮﮔﻴﺮی ﺷﻮد ﻛﻪ ﻟﺒﻪ ﻫﺎی اﻳﻦ دو ورق U ﺷﻜﻞ ﺑﺎﻳﺪ در ﻧﺼﻒ ارﺗﻔﺎع در دو ﻃﺮف ﺗﻴﺮ ﺑﺎ ﻳﻜﺪﻳﮕﺮ ﺗﻼﻗﻲ ﻛﻨﻨﺪ. ورق‌های U ﺷﻜﻞ ﻣﻮرد ﻧﻈﺮ دارای ﻋﺮض 40 ﺳﺎﻧﺘﻴﻤﺘﺮ ( ﺑﺮاﺑﺮ ﻃﻮل ﻧﺎﺣﻴﻪ ﺑﺤﺮاﻧﻲ ﺗﻴﺮ) و ﻃﻮل 45 ﺳﺎﻧﺘﻴﻤﺘﺮ ( ﺑﺮاﺑﺮ ﻣﺠﻤﻮع ﻋﺮض و دو ﻧﻴﻢ ارﺗﻔﺎع ﺗﻴﺮ) ﻣﻲ ﺑﺎﺷﻨﺪ. در اﻳﻦ ﻧﻤﻮﻧﻪ ﭘﻴﺶ ﺑﻴﻨﻲ ﻣﻲ ﮔﺮدد ﺑﺎ ﺑﻬﺮه ﮔﻴﺮی از دورﭘﻴﭻ ﺳﺘﻮن، آرﻣﺎﺗﻮرﻫﺎی ﺗﻴﺮ ﺑﺘﻮاﻧﻨﺪ رﻓﺘﺎر ﻏﻴﺮارﺗﺠﺎﻋﻲ ﺑﻴﺸﺘﺮی از ﺧﻮد ﻧﺸﺎن دﻫﻨﺪ و شکل‌پذیری اﺗﺼﺎل اﻓﺰاﻳﺶ ﻳﺎﺑﺪ. ﺑﻨﺎﺑﺮاﻳﻦ ﻫﻤﺎﻧﻄﻮر ﻛﻪ در ﺷﻜﻞ ج) ﻧﺸﺎن داده ﺷﺪه از دو ﻋﺪد دورﭘﻴﭻ ﺳﺘﻮن در ﺑﺎﻻ و ﭘﺎﻳﻴﻦ ﭼﺸﻤﻪ اﺗﺼﺎل ﻛﻪ ﺟﻬﺖ اﻟﻴﺎف آن ﺑﻪ ﺻﻮرت اﻓﻘﻲ و در راﺳﺘﺎی ﻃﻮل ورق ﺑﻮده اﺳﺘﻔﺎده می‌شود ﻛﻪ دارای ﻋﺮض 35 ﺳﺎﻧﺘﻴﻤﺘﺮ و ﻃﻮل 110 ﺳﺎﻧﺘﻴﻤﺘﺮ ( ﺑﺮاﺑﺮ ﻣﺤﻴﻂ ﻣﻘﻄﻊ ﺳﺘﻮن ﺑﻪ اﺿﺎﻓﻪ 10 ﺳﺎﻧﺘﻴﻤﺘﺮ ﺑﺮای ﻫﻤﭙﻮﺷﺎﻧﻲ ﻟﺒﻪ ﻫﺎی ورق ﺑﻪ ﻣﻨﻈﻮر دورﭘﻴﭻ ﻛﺮدن آن) ﻣﻲ ﺑﺎﺷﻨﺪ. در ﺷﻜﻞ 3 ﻧﻤﻮﻧﻪ ﺗﻘﻮﻳﺖ ﺷﺪه RW1 ﭘﻴﺶ از اﻧﺠﺎم آزﻣﺎﻳﺶ ﻧﺸﺎن داده ﺷﺪه اﺳﺖ.

ﺧﺼﻮﺻﻴﺎت ﻣﺼﺎﻟﺢ

ﻣﻘﺎوﻣﺖ اﺳﺘﻮاﻧﻪ ای اﺳﺘﺎﻧﺪارد 28 روزه ﺑﺘﻦ ﺑﻪ ﻛﺎر رﻓﺘﻪ در اﺗﺼﺎﻻت 35 ﻣﮕﺎﭘﺎﺳﻜﺎل ﺑﻮد و ﻣﻴﻠﮕﺮد ﻫﺎی ﻃﻮﻟﻲ ﺳﺘﻮن ﻫﺎی اﺗﺼﺎﻻت دارای ﻣﻘﺎوﻣﺖ ﺗﺴﻠﻴﻢ 510 ﻣﮕﺎﭘﺎﺳﻜﺎل و ﻣﻘﺎوﻣﺖ ﻧﻬﺎﻳﻲ 588 ﻣﮕﺎﭘﺎﺳﻜﺎل ﺑﻮد. ﻣﻴﻠﮕﺮد ﻫﺎی ﻃﻮﻟﻲ ﻣﻮرد اﺳﺘﻔﺎده در ﺗﻴﺮﻫﺎی اﺗﺼﺎﻻت ﻧﻴﺰ دارای ﻣﻘﺎوﻣﺖ ﺗﺴﻠﻴﻢ 444 ﻣﮕﺎﭘﺎﺳﻜﺎل و ﻣﻘﺎوﻣﺖ ﻧﻬﺎﻳﻲ 677 ﻣﮕﺎﭘﺎﺳﻜﺎل ﺑﻮد. اﻟﻴﺎف FRP ﺑﻪ ﻛﺎر رﻓﺘﻪ در ﺗﻘﻮﻳﺖ اﺗﺼﺎﻻت از اﻟﻴﺎف ﻛﺮﺑﻨﻲ (CFRP) ﺑﻮده ﻛﻪ ﻧﻤﻮﻧﻪ ای از اﻳﻦ اﻟﻴﺎف در ﺷﻜﻞ 4 ﻧﺸﺎن داده ﺷﺪه اﺳﺖ. ﻫﻤﭽﻨﻴﻦ رزﻳﻦ ﺑﻜﺎر رﻓﺘﻪ در ﭼﺴﺒﺎﻧﺪن ورق ﻫﺎ ﺷﺎﻣﻞ دو ﻗﺴﻤﺖ رزﻳﻦ ﭘﺎﻳﻪ (Base) و واﻛﻨﺶ دﻫﻨﺪه (Reactor) می‌باشد.

ﻣﺸﺨﺼﺎت ﺳﺎﺧﺘﻪ ﺷﺪه ﺑﺮای آزﻣﺎﻳﺶ اﺗﺼﺎﻻت و اﺑﺰارﻫﺎی اﻧﺪازه ﮔﻴﺮی و ﺛﺒﺖ اﻃﻼﻋﺎت

در ﺷﻜﻞ 5 ﺟﺰﺋﻴﺎت ﺳﻴﺴﺘﻢ setup ﺑﺮای آزﻣﺎﻳﺶ اﺗﺼﺎﻻت ﻧﺸﺎن داده ﺷﺪه اﺳﺖ. ﺑﻪ ﻣﻨﻈﻮر ﺗﻌﻴﻴﻦ ﻛﺮﻧﺶ ﭼﺸﻤﻪ اﺗﺼﺎل و دوران ﺗﻴﺮ، ﺗﻐﻴﻴﺮ ﻣﻜﺎن ﺳﻨﺞ ﻫﺎﻳﻲ LVDT( ﻣﻄﺎﺑﻖ ﺷﻜﻞ اﻟﻒ) در ﻣﺤﻞ ﻫﺎی ﻧﺸﺎن داده ﺷﺪه ﻧﺼﺐ ﮔﺮدﻳﺪ و از دو ﻋﺪد LVDT ﻧﻴﺰ ﺑﻪ ﻣﻨﻈﻮر اﻧﺪازه ﮔﻴﺮی ﺗﻐﻴﻴﺮ ﻣﻜﺎن ﺑﺎﻻی ﺗﻴﺮ اﺳﺘﻔﺎده ﺷﺪ. ﻫﻤﻪ اﺑﺰارﻫﺎی اﻧﺪازه ﮔﻴﺮی ﺑﻪ ﻣﻨﻈﻮر ذﺧﻴﺮه ﺳﺎزی اﻃﻼﻋﺎت آن‌ها، ﺑﻪ دﺳﺘﮕﺎه ﺛﺒﺖ اﻃﻼﻋﺎت ﻣﺘﺼﻞ ﺷﺪﻧﺪ. از دو ﺟﻚ 200 ﻛﻴﻠﻮﻧﻴﻮﺗﻦ ﻛﻪ ﺑﻪ ﺻﻮرت اﻓﻘﻲ در ﺑﺎﻻی ﻧﻤﻮﻧﻪ ﻗﺮار داده ﺷﺪه اﻧﺪ ﺑﻪ ﻣﻨﻈﻮر اﻋﻤﺎل ﺑﺎر ﭼﺮﺧﻪ ای ﺑﻪ اﻧﺘﻬﺎی ﺗﻴﺮ اﺳﺘﻔﺎده ﮔﺮدﻳﺪ. ﺟﻬﺖ اﻋﻤﺎل ﺑﺎرﻣﺤﻮری ﺑﻪ ﺳﺘﻮن، ﻳﻚ ﺟﻚ 500 ﻛﻴﻠﻮﻧﻴﻮﺗﻦ در اﻧﺘﻬﺎی ﺳﺘﻮن، در ﻣﺤﻞ ﺗﻜﻴﻪ ﮔﺎه ﻏﻠﻄﻜﻲ ﻗﺮار داده ﺷﺪه و اﻧﺘﻬﺎی دﻳﮕﺮ ﺳﺘﻮن ﺑﻪ ﺗﻜﻴﻪ ﮔﺎه ﻣﻔﺼﻠﻲ ﻣﺘﺼﻞ ﺷﺪ. ﻧﻴﺮوی ﻣﺤﻮری ﺛﺎﺑﺖ 350 ﻛﻴﻠﻮﻧﻴﻮﺗﻦ اﻋﻤﺎل ﺷﺪه ﺑﻪ ﺳﺘﻮن در ﻃﻮل آزﻣﺎﻳﺶ، 20 ﻇﺮﻓﻴﺖ ﺑﺎرﺑﺮی ﻣﺤﻮری اﺳﻤﻲ ﺳﺘﻮن ﺑﻮده ﻛﻪ ﺑﻪ وﺳﻴﻠﻪ راﺑﻄﻪ زﻳﺮ ﻣﺤﺎﺳﺒﻪ ﻣﻲ ﮔﺮدد.

ﻛﻪ در آن Ag ﺳﻄﺢ ﻣﻘﻄﻊ ﻧﺎﺧﺎﻟﺺ ﻣﻘﻄﻊ ﺳﺘﻮن و Ast ﺳﻄﺢ ﻣﻘﻄﻊ ﻛﻞ ﻓﻮﻻدﻫﺎی ﺳﺘﻮن می‌باشد. ﻓﺎﺻﻠﻪ ﻣﺤﻞ اﻋﻤﺎل ﻧﻴﺮوی اﻓﻘﻲ ﺑﻪ اﻧﺘﻬﺎی ﺗﻴﺮ ﺗﺎ ﺑﺮ ﺳﺘﻮن1250 ﻣﻴﻠﻴﻤﺘﺮ می‌باشد. ﻧﻴﺮوی اﻓﻘﻲ اﻋﻤﺎﻟﻲ ﺑﻪ ﺗﻴﺮ ﺑﻪ ﺻﻮرت ﻛﻨﺘﺮل ﺗﻐﻴﻴﺮ ﻣﻜﺎن ﺑﺎ ﺳﻪ ﭼﺮﺧﻪ در ﻫﺮ درﻳﻔﺖ ﺑﻮده ﻛﻪ ﺑﺎ درﻳﻔﺖ 0.5% ﺑﺎ ﺗﻐﻴﻴﺮ ﻣﻜﺎن ﻧﻈﻴﺮ 6.25 ﻣﻴﻠﻴﻤﺘﺮ آﻏﺎز ﮔﺮدﻳﺪ ﺗﺎ ﺗﺮک ﻫﺎی اﻻﺳﺘﻴﻚ ﺧﻤﺸﻲ ﻧﻤﺎﻳﺎن ﮔﺮدﻧﺪ. در ﻧﻬﺎﻳﺖ ﺑﺎرﮔﺬاری ﺗﺎ درﻳﻔﺖ 8% و ﺗﻐﻴﻴﺮ ﻣﻜﺎن ﻧﻈﻴﺮ 85 ﻣﻴﻠﻴﻤﺘﺮ اداﻣﻪ ﭘﻴﺪا ﻛﺮد ﻛﻪ در اﻟﮕﻮی ﺑﺎرﮔﺬاری ﭼﺮﺧﻪ ای اﻓﺰاﻳﺸﻲ ، ﺑﺎرﮔﺬاری ﺗﺎ درﻳﻔﺖ 8% و ﺗﻐﻴﻴﺮ ﻣﻜﺎن ﻧﻈﻴﺮ 85 ﻣﻴﻠﻴﻤﺘﺮ اداﻣﻪ ﭘﻴﺪا ﻛﺮد.

ﻣﺸﺎﻫﺪات و ﻧﺘﺎﻳﺞ آزﻣﺎﻳﺶ ﻫﺎ

ﺑﻪ ﻣﻨﻈﻮر ﻣﺸﺎﻫﺪه ﺗﺮک ﻫﺎی اوﻟﻴﻪ در اﺗﺼﺎﻻت، ﺑﺎرﮔﺬاری اﻋﻤﺎﻟﻲ ﺑﻪ اﺗﺼﺎﻻت از درﻳﻔﺖ 0.5 آﻏﺎز ﮔﺮدﻳﺪ. ﻫﺮ دو اﺗﺼﺎل در اﻳﻦ ﺗﻐﻴﻴﺮ ﻣﻜﺎن دﭼﺎر ﺗﺮک ﻫﺎی ﺧﻤﺸﻲ ﺟﺰﺋﻲ در ﻧﺎﺣﻴﻪ ارﺗﻔﺎع ﺗﻴﺮ ﺷﺪﻧﺪ و ﺑﺎ اداﻣﻪ روﻧﺪ ﺑﺎرﮔﺬاری در درﻳﻔﺖ 1 ﺗﺴﻠﻴﻢ ﺷﺪﮔﻲ آرﻣﺎﺗﻮرﻫﺎی ﻃﻮﻟﻲ ﺗﻴﺮ ﻣﺸﺎﻫﺪه ﮔﺮدﻳﺪ. در ﺷﻜﻞ 6 ﻧﻤﻮﻧﻪ اﺗﺼﺎﻻت در ﭘﺎﻳﺎن درﻳﻔﺖ 1% ﻧﺸﺎن داده ﺷﺪه اﻧﺪ. در ﻧﻤﻮﻧﻪ WR در درﻳﻔﺖ %1 ﺗﺮک ﻫﺎی ﺧﻤﺸﻲ ﺟﺪﻳﺪ در ﻣﺤﺪوده ﻧﺎﺣﻴﻪ ﺑﺤﺮاﻧﻲ ﺗﻴﺮ ﺑﻮﺟﻮد آﻣﺪﻧﺪ. در درﻳﻔﺖ 1.5 ﺗﺎ 2 ﺗﺮک ﺧﻮردﮔﻲ ﺧﻤﺸﻲ در ﺑﺮ اﺗﺼﺎل ﺗﻴﺮ ﺑﻪ ﺳﺘﻮن و ﻧﻴﺰ در ﻧﻮاﺣﻲ ﺑﺎﻻﺗﺮ و ﻫﻤﭽﻨﻴﻦ ﺗﺮک ﻫﺎی ﺑﺮﺷﻲ 45 درﺟﻪ در ﻧﺎﺣﻴﻪ ﺑﺤﺮاﻧﻲ ﺗﻴﺮ ﻣﺸﺎﻫﺪه ﺷﺪﻧﺪ. در اداﻣﻪ ﺗﺎ درﻳﻔﺖ %4 ﺗﺮک ﻫﺎی ﺑﺮﺷﻲ و ﺧﻤﺸﻲ ﺟﺪﻳﺪ در ﻧﺰدﻳﻜﻲ ﺑﺮ اﺗﺼﺎل اﻳﺠﺎد ﺷﺪه و ﻋﺮض ﺗﺮک ﻫﺎی ﻗﺒﻠﻲ ﻧﻴﺰ اﻓﺰاﻳﺶ ﻳﺎﻓﺖ. ﻫﭽﻨﻴﻦ در اﻳﻦ ﻣﺮﺣﻠﻪ در ﭼﺸﻤﻪ اﺗﺼﺎل ﺗﺮک ﻫﺎی ﻗﻄﺮی ﺑﺮﺷﻲ ﻣﺸﺎﻫﺪه ﺷﺪﻧﺪ. در اداﻣﻪ ﺗﺎ درﻳﻔﺖ 8% ﺗﺮک ﺟﺪﻳﺪ و ﻧﻴﺰ ﮔﺴﺘﺮش ﻋﺮض ﺗﺮک ﻫﺎ در ﻧﻮاﺣﻲ ﺑﺎﻻﻳﻲ ﺗﻴﺮ ﻣﺸﺎﻫﺪه ﻧﺸﺪ و ﺗﻨﻬﺎ ﭘﺪﻳﺪه ﻗﺎﺑﻞ ﻣﺸﺎﻫﺪه ﺑﺎزﺷﺪﮔﻲ ﺑﻴﺸﺘﺮ ﺗﺮک ﺧﻤﺸﻲ ﺗﻴﺮ در ﺑﺮ اﺗﺼﺎل ﺗﻴﺮ ﺑﻪ ﺳﺘﻮن می‌باشد ﻛﻪ نشان‌دهنده ﺗﺴﻠﻴﻢ ﻛﺎﻣﻞ آرﻣﺎﺗﻮرﻫﺎی ﻃﻮﻟﻲ ﺗﻴﺮ و ﺗﻐﻴﻴﺮ ﺷﻜﻞ ﭘﻼﺳﺘﻴﻚ آن‌ها می‌باشد ﻛﻪ در اداﻣﻪ ﺗﺎ ﭘﺎﻳﺎن ﺑﺎرﮔﺬاری ﻗﺴﻤﺖ ﻫﺎﻳﻲ از ﺑﺘﻦ ﻛﺎور در ﺳﻄﻮح ﺑﺎﻻ و ﭘﺎﻳﻴﻦ ﺗﻴﺮ در ﺣﺪ ﻓﺎﺻﻞ ﺑﻴﻦ اوﻟﻴﻦ ﺧﺎﻣﻮت ﺗﻴﺮ و ﺑﺮ اﺗﺼﺎل ﺑﻪ ﻋﻠﺖ ﺗﺮک ﻫﺎی ﻋﻤﻴﻖ و ﺗﻐﻴﻴﺮ ﺷﻜﻞ ﭘﻼﺳﺘﻴﻚ آرﻣﺎﺗﻮرﻫﺎ در اﻳﻦ ﻣﺤﺪوده، ﺗﺨﺮﻳﺐ ﺷﺪﻧﺪ. ﻫﻤﭽﻨﻴﻦ ﻋﺮض ﺗﺮک ﻫﺎی ﺑﺮﺷﻲ ﭼﺸﻤﻪ اﺗﺼﺎل ﻧﻴﺰ رو ﺑﻪ اﻓﺰاﻳﺶ ﺑﻮده و ﺗﺮک ﻫﺎﻳﻲ ﻧﻴﺰ در وﺟﻪ ﻛﻨﺎری ﺳﺘﻮن در ﻧﺎﺣﻴﻪ اﺗﺼﺎل ﺑﻮﺟﻮد آﻣﺪﻧﺪ ﻛﻪ ﻧﺸﺎن از ﻧﻴﺮوی ﺑﺴﻴﺎر زﻳﺎد در آرﻣﺎﺗﻮرﻫﺎی ﻃﻮﻟﻲ ﺗﻴﺮ می‌باشد ﻛﻪ از ﻃﺮﻳﻖ ﻗﻼب ﻫﺎی اﻧﺘﻬﺎﻳﻲ اﻳﻦ آرﻣﺎﺗﻮرﻫﺎ ﺑﻪ ﭼﺸﻤﻪ اﺗﺼﺎل اﻧﺘﻘﺎل ﭘﻴﺪا ﻛﺮده اﻧﺪ. در ﻣﺮاﺣﻞ ﭘﺎﻳﺎﻧﻲ ﺑﺎرﮔﺬاری ﺷﺪت اﻳﻦ ﻧﻴﺮوﻫﺎ و ﺗﺮک ﻫﺎی ﺣﺎﺻﻠﻪ ﺑﻪ ﺣﺪی می‌باشد ﻛﻪ ﻛﺎور ﺳﺘﻮن و ﻗﺴﻤﺖ ﻫﺎﻳﻲ از ﺑﺘﻦ داﺧﻞ ﭼﺸﻤﻪ اﺗﺼﺎل ﺗﺨﺮﻳﺐ ﻣﻲ ﺷﻮﻧﺪ.

در ﻧﻤﻮﻧﻪ RW1 ﺗﺎ درﻳﻔﺖ %1.5 ﻓﻘﻂ ﺗﺮک ﻫﺎی ﺧﻤﺸﻲ در وﺟﻮه ﻣﺨﺘﻠﻒ ﺗﻴﺮ و در ﺑﻌﺪ از ﻃﻮل ﺗﻘﻮﻳﺖ ﺷﺪه ﻣﺸﺎﻫﺪه ﺷﺪ. در اداﻣﻪ و در درﻳﻔﺖ 2%، ﺗﺮک ﺧﻤﺸﻲ در ﺗﻴﺮ و در ﺑﺮ اﺗﺼﺎل ﺗﻴﺮ ﺑﻪ ﺳﺘﻮن اﻳﺠﺎد ﺷﺪ و ﺗﺎ ﭘﺎﻳﺎن ﺑﺎرﮔﺬاری ﺗﻨﻬﺎ ﭘﺪﻳﺪه ﻗﺎﺑﻞ ﻣﺸﺎﻫﺪه اﻓﺰاﻳﺶ ﻋﺮض و ﻋﻤﻖ اﻳﻦ ﺗﺮک در ﺑﺮ اﺗﺼﺎل ﺑﻮد ﺑﻪ ﻃﻮری ﻛﻪ در ﺳﻴﻜﻞ ﻫﺎی آﺧﺮ ﺑﺎرﮔﺬاری، اﻳﻦ ﺗﺮک ﺧﻤﺸﻲ ﻛﻞ ﺳﻄﺢ ﻣﻘﻄﻊ ﺗﻴﺮ در ﺑﺮ اﺗﺼﺎل را ﻓﺮا ﮔﺮﻓﺖ. ﭘﺪﻳﺪه ﻗﺎﺑﻞ ﺗﻮﺟﻪ در اﻳﻦ ﻧﻤﻮﻧﻪ اﺗﺼﺎل، ﻋﺪم ﺗﺮک ﺧﻮردﮔﻲ و ﺗﺨﺮﻳﺐ و اﻧﻬﺪام ﺑﺘﻦ در ﻧﺎﺣﻴﻪ ﭼﺸﻤﻪ اﺗﺼﺎل و وﺟﻪ ﻛﻨﺎری ﺳﺘﻮن در ﻧﺎﺣﻴﻪ اﺗﺼﺎل ﺑﺪﻟﻴﻞ ﺗﻘﻮﻳﺖ ﺑﺮﺷﻲ ﺻﻮرت ﮔﺮﻓﺘﻪ ﺗﻮﺳﻂ ورق‌های U ﺷﻜﻞ می‌باشد. ﻫﻤﭽﻨﻴﻦ در ﻃﻮل ﺗﻘﻮﻳﺖ ﺷﺪه ﺗﻴﺮ ﻧﻴﺰ ﺑﺪﻟﻴﻞ ﻣﺤﺼﻮر ﻛﻨﻨﺪﮔﻲ اﻳﺠﺎد ﺷﺪه ﺗﻮﺳﻂ ورق‌های ﺗﻘﻮﻳﺘﻲ، از ﺗﺨﺮﻳﺐ ﺑﺘﻦ و رﻳﺰش ﻛﺎور ﻣﺤﺎﻓﻆ در ﻃﻮل ﻧﺎﺣﻴﻪ ﺑﺤﺮاﻧﻲ ﺗﻴﺮ ﺟﻠﻮﮔﻴﺮی ﺷﺪه و درنتیجه ﺗﺮک ﺧﻮردﮔﻲ ﺑﺘﻦ در اﻳﻦ ﻧﺎﺣﻴﻪ، در ﻛﻞ ﻣﻘﻄﻊ ﺗﻴﺮ در ﺑﺮ اﺗﺼﺎل اﺗﻔﺎق ﻣﻲ اﻓﺘﺪ. در ﺷﻜﻞ 9 ﻧﻤﻮﻧﻪ اﺗﺼﺎﻻت در ﭘﺎﻳﺎن ﺑﺎرﮔﺬاری ﻧﺸﺎن داده ﺷﺪه اﻧﺪ. ﻫﻤﺎﻧﻄﻮری ﻛﻪ در ﺷﻜﻞ 7 ﻣﻼﺣﻈﻪ می‌شود ﺷﻜﻞ ﮔﺴﻴﺨﺘﮕﻲ در ﻧﻤﻮﻧﻪ WR ﺑﻪ ﺻﻮرت ﺗﺮک ﻫﺎی ﺧﻤﺸﻲ و ﻣﺨﺼﻮﺻﺎ ﺗﺮک ﺧﻤﺸﻲ ﻋﻤﻴﻖ ﺗﻴﺮ در ﺑﺮ اﺗﺼﺎل ﺗﻴﺮ ﺑﻪ ﺳﺘﻮن و ﻧﻴﺰ ﺗﺮک ﻫﺎی ﻋﻤﻴﻖ ﺑﺮﺷﻲ ﺿﺮﺑﺪری ﺷﻜﻞ و اﻧﻬﺪام ﺑﺘﻦ در ﭼﺸﻤﻪ اﺗﺼﺎل ﺑﻮده و در ﻧﻤﻮﻧﻪ RW1 ﺑﻪ ﺻﻮرت ﺗﺮک ﺧﻤﺸﻲ ﺗﻴﺮ در ﺑﺮ اﺗﺼﺎل ﺗﻴﺮ ﺑﻪ ﺳﺘﻮن می‌باشد.

ﻧﺘﺎﻳﺞ و ﺗﻔﺴﻴﺮ آن‌ها

ﻧﺘﺎﻳﺞ اوﻟﻴﻪ

ﻣﻘﺎدﻳﺮ ﻣﻤﺎن ﻣﺘﻨﺎﻇﺮ ﺑﺎ ﻟﺤﻈﻪ ﺟﺎری ﺷﺪن آرﻣﺎﺗﻮر ﻫﺎی ﻃﻮﻟﻲ ﺗﻴﺮ My، ﻣﻤﺎن ﺣﺪاﻛﺜﺮ Mmax و ﻣﻤﺎن ﻧﻬﺎﻳﻲ Mu( ﻣﺘﻨﺎﻇﺮ ﺑﺎ ﺗﻐﻴﻴﺮ ﻣﻜﺎن ﺣﺪاﻛﺜﺮ اﺗﺼﺎل ﻗﺒﻞ از ﮔﺴﻴﺨﺘﮕﻲ)ﺑﺮای ﻫﺮ ﻳﻚ از ﻧﻤﻮﻧﻪ ﻫﺎ و ﻧﻴﺰ درﺻﺪ اﻓﺰاﻳﺶ اﻳﻦ ﻣﻘﺎدﻳﺮ در ﻧﻤﻮﻧﻪ RW1 ﻧﺴﺒﺖ ﺑﻪ ﻧﻤﻮﻧﻪ ﻣﺮﺟﻊ ﺿﻌﻴﻒ WR در ﺟﺪول 1 آورده ﺷﺪه اﺳﺖ. ﻣﻨﺤﻨﻲ ﻫﻴﺴﺘﺮزﻳﺲ ﻣﻤﺎن- درﻳﻔﺖ ﻧﻤﻮﻧﻪ ﻫﺎی WR و RW1 ﺗﺎ درﻳﻔﺖ 8 در ﺷﻜﻞ 8 ﻧﺸﺎن داده ﺷﺪه اﺳﺖ. ﭘﻮش ﻣﻨﺤﻨﻲ ﻣﻤﺎن- درﻳﻔﺖ اﺗﺼﺎﻻت در ﺷﻜﻞ 9 ﻧﺸﺎن داده ﺷﺪه و ﺑﺎ ﻫﻢ ﻣﻘﺎﻳﺴﻪ ﺷﺪه اﻧﺪ. ﻣﻴﺰان شکل‌پذیری اﺗﺼﺎﻻت ﺑﺮ اﺳﺎس ﻧﺴﺒﺖ ﺗﻐﻴﻴﺮ ﻣﻜﺎن ﻧﻬﺎﻳﻲ ﺑﻪ ﺗﻐﻴﻴﺮ ﻣﻜﺎن ﺟﺎری ﺷﺪن   ﺗﻌﺮﻳﻒ ﻣﻲ ﮔﺮدد ﻛﻪ ﺗﻐﻴﻴﺮ ﻣﻜﺎن ﻧﻬﺎﻳﻲ ﺑﺮاﺑﺮ ﻛﻤﺘﺮﻳﻦ ﻣﻘﺪار ﺑﻴﻦ ﺗﻐﻴﻴﺮ ﻣﻜﺎن ﻧﻬﺎﻳﻲ و ﺗﻐﻴﻴﺮ ﻣﻜﺎن ﻧﻈﻴﺮ 15 درﺻﺪ اﻓﺖ ﺑﺎر ﺣﺪاﻛﺜﺮ درﻧﻈﺮ ﮔﺮﻓﺘﻪ می‌شود.

 

ﺗﺎﺛﻴﺮ مقاوم‌سازی ﻧﻤﻮﻧﻪ ﻫﺎی ﺿﻌﻴﻒ ﺑﺎ ورق‌هایFRP

وﺿﻌﻴﺖ ﺧﺮاﺑﻲ ﻫﺎ و ﺧﺴﺎرات ﺑﻮﺟﻮد آﻣﺪه در دو اﺗﺼﺎلWR و RW1 در ﺷﻜﻞ 10 ﻧﺸﺎن داده ﺷﺪه ﻛﻪ ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ آن در اﺗﺼﺎل ﻣﺮﺟﻊ ﺿﻌﻴﻒ WR، ﭼﺸﻤﻪ اﺗﺼﺎل دﭼﺎر ﺗﺮک ﺧﺮدﮔﻲ ﻫﺎی ﺷﺪﻳﺪ ﺷﺪ ﺑﻪ ﻃﻮری ﻛﻪ ﺗﺨﺮﻳﺐ و رﻳﺰش ﺑﺘﻦ در وﺟﻪ زﻳﺮﻳﻦ ﭼﺸﻤﻪ اﺗﺼﺎل ﻣﺸﺎﻫﺪه ﮔﺮدﻳﺪ. ﺿﻤﻨﺎ ﺗﺮک ﻫﺎی ﺧﻤﺸﻲ ﺷﺪﻳﺪ در ﺑﺮ اﺗﺼﺎل ﺗﻴﺮ ﺑﻪ ﺳﺘﻮن ﻣﺸﺎﻫﺪه ﺷﺪ ﺑﻪ ﻃﻮری ﻛﻪ ﺳﻄﺢ ﻣﻘﻄﻊ ﺑﺘﻨﻲ ﺗﻴﺮ در ﺑﺮ اﺗﺼﺎل، ﻛﺎﻣﻼ از روی ﺳﺘﻮن ﺟﺪا ﺷﺪ ﻟﻒ). در اﺗﺼﺎل RW1 ﻧﻴﺰ در ﺗﻴﺮ ﺗﺮک ﺧﻮردﮔﻲ ﺧﻤﺸﻲ ﻗﺎﺑﻞ ﺗﻮﺟﻪ در ﺑﺮ اﺗﺼﺎل ﺗﻴﺮ ﺑﻪ ﺳﺘﻮن ﺑﻪ وﻗﻮع ﭘﻴﻮﺳﺖ و در ﻃﻮل ﺗﻴﺮ و در ﺑﺎﻻی ﻗﺴﻤﺖ ﺗﻘﻮﻳﺖ ﺷﺪه، ﺗﺮک ﻫﺎی ﺧﻤﺸﻲ ﺟﺰﺋﻲ ﻣﺸﺎﻫﺪه ﺷﺪ. در ﭘﺎﻳﺎن آزﻣﺎﻳﺶ، ﺗﺮک ﺧﻤﺸﻲ در ﺗﻤﺎم ﺳﻄﺢ ﻣﻘﻄﻊ ﺗﻴﺮ ﮔﺴﺘﺮش ﻳﺎﻓﺘﻪ ﺑﻮد ﺑﻨﺎﺑﺮاﻳﻦ ﺑﺎ اﻟﮕﻮی ﺗﻘﻮﻳﺖ ﺑﻜﺎر رﻓﺘﻪ در مقاوم‌سازی اﻳﻦ اﺗﺼﺎل، اﻳﻦ آسیب‌های اﺳﺎﺳﻲ در اﺗﺼﺎل ﺿﻌﻴﻒ ﺑﺮﻃﺮف ﺷﺪﻧﺪ.

 

ﺷﻜﻞ وﺿﻌﻴﺖ ﺧﺮاﺑﻲ ﻫﺎی اﺗﺼﺎﻻتWR وRW1 در ﭘﺎﻳﺎن آزﻣﺎﻳﺶ ﻣﻄﺎﺑﻖ ﺷﻜﻞ 8 ﻣﺸﺎﻫﺪه می‌شود ﻣﻨﺤﻨﻲ ﻣﻤﺎن- درﻳﻔﺖ اﺗﺼﺎل WR دارای ﺟﻤﻊ ﺷﺪﮔﻲ ﻗﺎﺑﻞ ﺗﻮﺟﻬﻲ ﺑﻴﺸﺘﺮی می‌باشد و ﻧﻴﺰ ﺑﺮای ﻣﻘﺎﻳﺴﻪ ﺟﻤﻊ ﺷﺪﮔﻲ ﻣﻨﺤﻨﻲ ﻫﺎ، ﻋﺮض ﻣﻨﺤﻨﻲ ﻣﻤﺎن- درﻳﻔﺖ اﺗﺼﺎل WR در ﻣﺒﺪا ﺑﺮاﺑﺮ 3 واﺣﺪ می‌باشد، در ﺣﺎﻟﻲ ﻛﻪ اﻳﻦ ﻣﻘﺪار ﺑﺮای اﺗﺼﺎل RW1 ﺑﺮاﺑﺮ 6.2 واﺣﺪ می‌باشد ﻛﻪ ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ اﻳﻦ ﻣﻘﺪار و ﻧﻴﺰ ﺷﻜﻞ ﻇﺎﻫﺮی ﻣﻨﺤﻨﻲ ﻫﻴﺴﺘﺮزﻳﺲ اﺗﺼﺎلRW1 در ﻣﻘﺎﻳﺴﻪ ﺑﺎ ﻋﺮض ﻣﻨﺤﻨﻲ و ﻧﻴﺰ ﺷﻜﻞ ﻇﺎﻫﺮی ﻣﻨﺤﻨﻲ ﻫﻴﺴﺘﺮزﻳﺲ اﺗﺼﺎل WR ﻛﻪ ﻻﻏﺮ و ﺟﻤﻊ ﺷﺪه می‌باشد،رﻓﺘﺎر ﺷﻜﻞ ﭘﺬﻳﺮﺗﺮ و ﻗﺎﺑﻠﻴﺖ ﺟﺬب و اﺳﺘﻬﻼک اﻧﺮژی ﺑﻴﺸﺘﺮ اﻳﻦ اﺗﺼﺎل ﺗﻘﻮﻳﺖ ﺷﺪه ﻧﺴﺒﺖ ﺑﻪ اﺗﺼﺎل WR ﻗﺎﺑﻞ درﻳﺎﻓﺖ ﻣﻴﺒﺎﺷﺪ.

ﻧﺘﻴﺠﻪ ﮔﻴﺮی

ﺑﺎ مقاوم‌سازی ﻧﻤﻮﻧﻪ ﺿﻌﻴﻒ ﻗﺒﻞ ( ﻋﺪم رﻋﺎﻳﺖ ﺿﺎﺑﻄﻪ ﺧﺎﻣﻮت ﮔﺬاری ﻓﺸﺮده در ﻧﺎﺣﻴﻪ ﺑﺤﺮاﻧﻲ ﺗﻴﺮ و ﻧﻴﺰ ﭼﺸﻤﻪ اﺗﺼﺎل) از ﺑﻮﺟﻮد آﻣﺪن ﺗﺮک ﻫﺎی ﻋﻤﻴﻖ ﺑﺮﺷﻲ و ﺗﺨﺮﻳﺐ ﺑﺘﻦ در ﻧﺎﺣﻴﻪ ﺑﺤﺮاﻧﻲ ﺗﻴﺮ ﺟﻠﻮﮔﻴﺮی ﺷﺪ. ﺗﻨﻬﺎ ﻣﻮرد ﺧﺮاﺑﻲ وﺷﻜﺴﺖ در اﻳﻦ ﻧﻤﻮﻧﻪ، ﺷﻜﺴﺖ ﺧﻤﺸﻲ ﺗﻴﺮ در ﺑﺮ اﺗﺼﺎل می‌باشد.

ﻣﻘﺎوﻣﺖ ﻫﺎی ﺗﺴﻠﻴﻢ، ﺣﺪاﻛﺜﺮ و ﻧﻬﺎﻳﻲ در ﻟﺤﻈﻪ ﭘﺎﻳﺎن ﺑﺎرﮔﺬاری ﻧﻤﻮﻧﻪ RW1 ﻧﺴﺒﺖ ﺑﻪ ﻧﻤﻮﻧﻪ WR، ﺑﻪ ﺗﺮﺗﻴﺐ 48،13 و 61 درﺻﺪ اﻓﺰاﻳﺶ ﻣﻲ ﻳﺎﺑﻨﺪ ﻛﻪ نشان‌دهنده ﺑﻬﺒﻮد ﻣﻄﻠﻮب ﻣﺸﺨﺼﻪ ﻫﺎی ﻣﻘﺎوﻣﺘﻲ اﺗﺼﺎل ﻣﻲ ﺑﺎﺷﻨﺪ.

در ﻧﻤﻮﻧﻪ ﺗﻘﻮﻳﺖ ﺷﺪه، اﻓﺖ ﺑﺎر در آﺧﺮﻳﻦ درﻳﻔﺖ ﺑﺎرﮔﺬاری ﻧﺴﺒﺖ ﺑﻪ ﺑﺎر ﺣﺪاﻛﺜﺮ ﺑﺴﻴﺎر ﻛﻤﺘﺮ از ﻧﻤﻮﻧﻪ ﺿﻌﻴﻒ می‌باشد ﺑﻪ ﻃﻮری ﻛﻪ ﻧﺴﺒﺖ ﺑﺎر ﻧﻬﺎﻳﻲ ﺑﻪ ﺑﺎر ﺣﺪاﻛﺜﺮ در ﻧﻤﻮﻧﻪ ﺗﻘﻮﻳﺘﻲ ﺗﻘﺮﻳﺒﺎ 0.84 و ﺑﺮای ﻧﻤﻮﻧﻪ ﺿﻌﻴﻒ ﺣﺪودا 0.59 می‌باشد.

شکل‌پذیری ﻧﻤﻮﻧﻪ RW1 ﻧﺴﺒﺖ ﺑﻪ ﻧﻤﻮﻧﻪ WR، 16 درﺻﺪ اﻓﺰاﻳﺶ دارد ﻛﻪ ﺑﻮﺿﻮح ﻣﻮﺛﺮ ﺑﻮدن اﻟﮕﻮی ﺗﻘﻮﻳﺖ ﺑﻜﺎر رﻓﺘﻪ در ﻧﻤﻮﻧﻪ RW1 ﻧﺘﻴﺠﻪ می‌شود.

در ﻣﺠﻤﻮع می‌توان اﻳﻦ ﮔﻮﻧﻪ ﺑﻴﺎن ﻛﺮد ﻛﻪ ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﻣﺸﻜﻼت اﺟﺮاﺋﻲ و ﻧﻴﺰ ﺗﻐﻴﻴﺮات آﺋﻴﻦ ﻧﺎﻣﻪ ای، اﺗﺼﺎﻻﺗﻲ ﻛﻪ در ﺳﺎزه ﻫﺎ از ﻧﻮع WR اﺟﺮا ﺷﺪه اﻧﺪ، ﺑﺎ ﺑﻜﺎر ﮔﻴﺮی اﻟﮕﻮی مقاوم‌سازی ﺑﻜﺎر رﻓﺘﻪ در ﺗﻘﻮﻳﺖ ﻧﻤﻮﻧﻪ RW1، رﻓﺘﺎر و ﻣﺸﺨﺼﻪ ﻫﺎی ﻣﻘﺎوﻣﺘﻲ و لرزه‌ای ﺑﻬﺒﻮد ﻳﺎﻓﺘﻪ ای در ﻣﻘﺎﻳﺴﻪ ﺑﺎ اﺗﺼﺎﻻت ﺿﻌﻴﻒ ( ﺑﺎ ﻧﻘﻴﺼﻪ ﻋﺪم ﺧﺎﻣﻮت ﮔﺬاری ﻓﺸﺮده در ﻧﺎﺣﻴﻪ ﺑﺤﺮاﻧﻲ ﺗﻴﺮ و ﭼﺸﻤﻪ اﺗﺼﺎل) ﻛﺴﺐ ﺧﻮاﻫﻨﺪ ﻛﺮد.

 

این مقاله به همت محمد کاظم شربتدار ، علیرضا ستاری فرد تهیه شده است.

5/5 - (1 امتیاز)
به اشتراک بگذارید:
فرشریف

مطالب اخیر

همه چیز درباره عایق رطوبتی دیوار؛ از انواع تا مزایا و روش‌های اجرا

چرا عایق رطوبتی دیوار مهم است؟ نکاتی برای جلوگیری از نفوذ رطوبت اهمیت استفاده از…

3 روز ago

عایق ساختمان چیست؟

عایق ساختمانی چیست و چرا اهمیت دارد؟ عایق ساختمانی مجموعه‌ای از مواد و روش‌هاست که…

4 روز ago

قیمت عایق کاری ساختمان چقدر است؟ عوامل مؤثر بر هزینه‌ها و نکات مهم

تعرفه عایق‌سازی ساختمان: هزینه‌ها را بشناسید و صرفه‌جویی کنید! عایق کاری ساختمان به‌عنوان راهکاری برای…

4 روز ago

آب بندی فشار منفی چیست؟

چگونه از نفوذ آب در شرایط فشار بالا جلوگیری کنیم؟ فشارهای وارده به ساختمان که…

1 هفته ago

آب بندی فشار مثبت چیست؟

آب بندی فشار مثبت بتن چیست؟ آب‌بندی بتن به مجموعه اقداماتی اطلاق می‌شود که با…

1 هفته ago

رفع ممنوعیت وال مش در ساختمان + دستورالعمل شهریور 1403

وال مش چیست و چرا به صنعت ساخت و ساز معرفی شد؟ اولین دلیل روی…

2 هفته ago